Semiparametric transition models

نویسندگان

چکیده

A new semiparametric time series model is introduced – the transition (SETR) that generalizes threshold and smooth models by letting function to be of an unknown form. Estimation based on a combination (local) least squares estimations regression parameters. The asymptotic behavior for coefficient estimator SETR established, including its oracle property. Monte Carlo simulations demonstrate proposed more robust form than parametric methods precise varying estimators.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation in semiparametric transition measurement error models for longitudinal data.

We consider semiparametric transition measurement error models for longitudinal data, where one of the covariates is measured with error in transition models, and no distributional assumption is made for the underlying unobserved covariate. An estimating equation approach based on the pseudo conditional score method is proposed. We show the resulting estimators of the regression coefficients ar...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Flexible semiparametric mixed models

In linear mixed models the influence of covariates is restricted to a strictly parametric form. With the rise of semiand nonparametric regression also the mixed model has been expanded to allow for additive predictors. The common approach uses the representation of additive models as mixed models. An alternative approach that is proposed in the present paper is likelihood based boosting. Boosti...

متن کامل

Semiparametric latent factor models

We propose a semiparametric model for regression and classification problems involving multiple response variables. The model makes use of a set of Gaussian processes to model the relationship to the inputs in a nonparametric fashion. Conditional dependencies between the responses can be captured through a linear mixture of the driving processes. This feature becomes important if some of the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Econometric Reviews

سال: 2021

ISSN: ['1532-4168', '0747-4938']

DOI: https://doi.org/10.1080/07474938.2021.1957281